
The Uzebox Project
Alec Bourque

March 2010

1 Introduction
A couple years ago, I found on the internet a Pong game made out of a single PIC microcontroller and a few

resistors! The microcontroller was generating a monochrome video signal, reading the joysticks and outputting

basic sound all at once with cycle-counting precision. I found this pretty awesome and wanted to build my

own video project using only AVR microcontrollers. I initially settled for some sort of retro computer that

would use multiple microcontrollers for the various functions like the main CPU, sound synthesis and the

keyboard matrix decoder. However, after adding some external memory (ROM & RAM), the video

synchronization generator and all support chips (multiplexers, shift registers, etc), I ended up filling a 2x1 foot

proto board...not quite what we could call hobbyist friendly! The approach had another flaw: I had to

continually switch the ISP programming port between the 3 AVRs. No, there had to be a better solution.

I went back to the drawing board just about the time when the ATMega644 came out. This chip could run at

20Mhz, had 64K of flash and 4K of RAM. Seemed perfect for a simple game console. I roughly calculated it

would have enough power for the video generation, 4 voices sound mixing and running the main program.

However, since I now wanted it have at least 256 simultaneous colors, color generation became an issue. As

you'll see in the following video primer, monochrome video is pretty easy to generate. Color on the other hand

is much more complex and not practical on low end MCU. Of all the color generation methods I investigated, I

opted for a simpler one: an AD725 color generation chip. Commonly called a RGB-to-NTSC converter, this

chip accepts 3 voltage inputs, one for each red, greed and blue component and handles the magic required to

produce that complex NTSC color output.

Driving this new design was the uttermost simplicity, something any hobbyist could build up in no time, ideally

made out only of DIP chips. So, apart from the AD725, the console is solely based on an Atmega644 and

discrete components like resistors and capacitors. I also decided to invest time developing some sort of interrupt

driven game “kernel” that would mix music, read joypads status, generate video synchronization and render

frames independently of the main game program. Although I knew I couldn't get around insane cycle-counting

for the kernel, once done, it would makes the actual game development a piece of cake.

2 Video Signal Primer
When I started the project, I didn't spent a lot of time thinking about the possible video output. A good old

classic composite TV output seemed most retro and appropriate than, say, VGA. After all, everybody has a TV.

And it's almost always placed in the living room, a much better place (I thought) to show off your games to

family and friends! :) The term composite video refers to the fact that both intensity, color and synchronization

information are mixed together into a single signal. And one thing I've noticed about it: there's many standards

out there. Seemed like each part of the world decided to make their own format, mostly incompatible with each

other. Since I live in Canada, the Uzebox produces NTSC composite video, the analog standard mainly used in

North America. It worth noting that, if you live in Europe everything is not lost. Although the NTSC standard is

not compatible with the PAL or SECAM standards many in Europe told me that most recent TVs sold there

supports NTSC.

Up to recently, with the advent of LCD and plasma TVs, we were still using the cathode ray tube (CRT for

short) as the basis for picture display. The CRT is a vacuum tube containing an electron gun (a source of

electrons) and a fluorescent screen, with internal means to accelerate and deflect the electron beam, used to

form images in the form of light emitted from the fluorescent screen.

A video signal is made of 30 frames per second (29.97 to be exact). A frame is the actual picture that fills the

screen of your TV. Each video frame is in turn made up of two fields; the 'even' and 'odd' fields. Fields in turn

are composed of scanlines, 524 scanlines in total (normally 525, more on that later). Fields are a remnant of the

past when technology would not allow the screen to redraw enough times per second to avoid flickering.

Engineers decided to draw half a picture at a time, first a field with only the odd lines, then they draw only the

even lines. Hence, fields are drawn at a rate of 60 times per seconds. This interlacing of the video lines coupled

with the phosphor coating persistence (the time that the phosphor continues to glow after being hit by the

electron beam), blends to the human eye, creating smooth motion and imperceptible flickering.

A field begins rendering at the top-left corner of the screen and the electron beam crosses the screen from left to

right rendering the video line. When it reaches the right side, the beam is turned off and brought back the left

side. That's called the horizontal blanking. When the beam's back to the left side, the next line begins rendering

and this continues until the 262nd line is completed rendering. The beam is then turned off and brought back to

the top-left corner during what is called the vertical blanking. Then the next fields begin the same process.

Here's what a field rendering looks like:

TVs require some signals to indicate them when to perform horizontal and vertical blanking. That's the

synchronization signal mentioned earlier. A full composite video signal fits within one volt. The "normal" or

reference voltage is at around 0.3v. The synchronization signals, or sync for short, are "negative going" pulse

going to zero volts. The active video on the other hand, "sits" on the reference voltage and swings from .3 to 1

volts. The typical signal for a scanline look like this:

From that picture we can notice a few things. A scanline is made of two main sections. The blanking interval

and the active video period. The blanking itself is composed of the horizontal sync pulse (called HSYNC) and a

color burst. Color generation in NTSC is tricky and the explanation of how it precisely works is way out of the

scope of this documentation. With that said, I'll risk a simple explanation. When TV came out it was only

monochrome, the active video part of the signal represented the luminance or intensity of the picture. When

color came, the NTSC engineers wanted to embed color (or chrominance) in the same signal and have it in a

way that would be backward compatible with all the B/W TVs out there. There was a short period of time after

the HSYNC pulse and beginning of the active video still free, so they put in there a color burst. This burst, made

of 9 cycles at 3.57Mhz, is used to synchronize the TV circuitry with the chrominance signal. The chrominance

is a 3.57Mhz signal modulating the luminance signal. The way they attained color was by changing the phase of

the chrominance modulation. Although this scheme had its issues (some said NTSC meant Never The Same

Color), it was clever enough to work on B/W television without major artifacts.

The last part to be covered is the vertical blanking. The TV circuitry needs way to know when the last line was

completed and the beam needed to go back to the top. This comes with a series of special sync pulses called the

vertical sync or VSYNC. Theses pulses are output at exactly double the line rate. There are 6 pre-equalization

pulses, 6 serration pulses and 6 post-equalization pulses. No color burst are issued during VSYNC. After the

18th pulse (or the 9th line) regular HSYNC pulse and color burst resume.

Here's the vertical sync signal. It happens at a rate of 60Hz and signals the beginning of each field. The

horizontal drive is just an internal reference corresponding to the line rate.

To conclude, here's something I wish I had known before and that NO other tutorials ever mentioned. It's worth

noting that the official NTSC RS170 standard mandates that each field is made of 262.5 lines (yes, 0.5 line!

hence 525 lines in total). This means that the raster beam stops mid-way on the last line and after the vertical

retrace is complete, it starts mid-way on the first scanline on the next field. In my very first prototype, this sync

stuff was rather confusing to me so I played safe and used a video sync generator chip. To my great deception,

the picture was flickering a lot and I could not explain why. I dug out and plugged in by good old NES and

SNES and notice their image were not flickering at all! Mesmerized, I turned on my oscilloscope and carefully

examined their signals. It turns out that the problem was that 0.5 line! There was no such thing on those

consoles, fields would contain exactly 262 lines, no more. Then I wrote the timing in software with those 262

lines per field and...success, no more flickering! According to a real video engineer: "Essentially what you're

doing there is by dropping the half line, the TV is *not* scanning in interlaced mode. Basically it's progressive

scan." So there you are.

3 Hardware

Figure 1:Uzebox block diagram

XTAL

VCC

VCC

VCC VCC

U2

CE
5

RIN6

GIN
7

BIN8

HSYNC16

VSYNC
15

YTRAP12
STND

1

4FSC3

A
G
N
D

2

D
G
N
D

1
3

A
P
O
S

4

D
P
O
S

1
4

COMP
10

LUMA
11

CRMA
9

VCC

R6

R7

R11

R19

R20

R5

R1

R10

R9

R8

R17

R18

C3

C4

C5

C6 C7

C10

C8 C9

C2 C1

U8

LINE VREG

COMMON

VOLTAGE

VCC

C13

U1

PC0
22

PC1 23

PC2 24

PC3
25

PC4 26

PC5
27

PC6 28

PC7
29

PA0
40

PA139

PA238

PA3
37

PA436

PA5
35

PA634

PA7
33

PB01

PB12

PB2
3

PB34

PB4
5

PB56

PB6
7

PB78

PD0 14

PD1 15

PD2
16

PD3 17

PD4
18

PD5 19

PD6
20

PD7 21

XTAL1
13

XTAL212

GND1
11

VCC 10

AVCC
30

AREF
32

GND2 31

/RESET
9

J2

U7

Gnd-Y

1

Gnd-C

2

Y
3

C
4

R24C14

R25C15

Optional S-Video out

U10

N
C
1

9
C
S

1
M
O
S
I

2
G
N
D
1

3
V
D
D

4
S
C
K

5
G
N
D
2

6
M
I
S
O

7
N
C
2

8

U11

LINE VREG

COMMON

VOLTAGE

VSSC17

R26 R27R28

R29 R30R31

VSS

D1

L1

C18

Optional

luma trap

U12

VCC 1

CLK
2

LATCH
3

DATA
4

NC1
5

NC2 6

GND 7

U13

VCC
1

CLK 2

LATCH 3

DATA 4

NC1 5

NC2
6

GND
7

VCC

R22
R2

LED1

J1

U5

R3

C12

C16

C11

Figure 2: Block diagram-to-Schematic mapping

3.1 The CPU

The hearth of the system is the Atmega644. Its job is quite simple: do everything! Well, of course, everything

except the NTSC color generation. As mentioned earlier, this would have been quite time consuming for such a

low-end MCU. So what means almost everything?

SD Card Interface

Joypad Interface

CPU

Sound Interface

Video DAC

 AD725 RGB-to-NTSC Converter

• Generate the video synchronization signals. The AD725 doesn't do that, only the color modulation

• Render the picture. This include scrolling and determining sprites transparency against the background

• Mix and output the music and sound effects

• Read the joystick buttons states

• Read and handle the UART

• Handle accesses to the SD card

• And last but not least...run your games!

The most important thing coming out of the ATmega is the graphics 'pipeline' (PORTC) onto which pixel data

is output. Each pixel needs exactly one byte to represent its color. 3 bits are allocated to the red component, 3

bits to the green component and 2 bits for the blue. Those are fed to a DAC composed of three R-2R resistor

ladders. In theory, this gives 256 simultaneous colors. Though in practice there are a number of colors that are

very close to each others.

It's worth noting that the MCU is rated at 20Mhz but runs overclocked at 28.6Mhz. This is a direct result of

using the AD725 and its requirement for a 14.3Mhz clock (4 times the NTSC color burst frequency, more on

that later). To avoid video aliasing, the MCU and AD725 clocks must be synchronized and either run at

identical or multiple of each other. Since it seemed a waste to downgrade the Atmega644 to 14.3Mhz, I tried the

other way around by overclocking it and, to my amazement, it handled it flawlessly.

3.2 The DAC

A DAC, or digital-to-analog converter, is a circuit that converts a binary value to a proportional output voltage

or current. For example, if your DAC has a maximum output of 1V, and you feed it a binary value of 128 (half

the maximum value that can hold a byte), you'll get 0.5 volt at the output. There is several ways to implement a

DAC. You can take off-the-shelf chips or build one out of resistors. With the resistors approach, there are two

main types: R-2R and weighted which the Uzebox uses. Explaining how that works is out of the scope of this

document, so I'll encourage readers (or writers of this book ;-) to search the internet.

The Uzebox DAC is in reality composed of 3 smaller ones; one for each color component. If you look at Figure

3, you'll see them, each boxed with the color they represent. You can see the red and green each have 3 wires

coming in from the MCU, while the blue component only has 2. Also, if you look closely, you will notice that

each block's output goes to an input pin of the AD725, which correspond to the appropriate color. In between,

those little capacitors (C3-C5) are used to block DC voltage from entering the AD725.

U2

CE
5

RIN
6

GIN
7

BIN
8

HSYNC
16

VSYNC
15

YTRAP
12

STND
1

4FSC
3

A
G
N
D

2

D
G
N
D

1
3

A
P
O
S

4

D
P
O
S

1
4

COMP
10

LUMA
11

CRMA
9

R6

R7

R11

R19

R5

R1

R10

R9

R8

R17

R18

C3

C4

C5

U1

PC0
22

PC1
23

PC2
24

PC3
25

PC4
26

PC5
27

PC6
28

PC7
29

PA0
40

PA1
39

PA2
38

PA3
37

PA4
36

PA5
35

PA6
34

PA7
33

PB0
1

PB1
2

PB2
3

PB3
4

PB4
5

PB5
6

PB6
7

PB7
8

PD0
14

PD1
15

PD2
16

PD3
17

PD4
18

PD5
19

PD6
20

PD7
21

XTAL1
13

XTAL2
12

GND1
11

VCC
10

AVCC
30

AREF
32

GND2
31

/RESET
9

Figure 3: Video DAC

So in the end, the DACs simply converts binary values that represent color components(0-7 for red and green

and 0-3 for blue) to voltage ranges (0-0.7V) suitable for the AD725.

3.3 The AD725

As mentioned earlier, NTSC composite color generation is not trivial. And especially not efficient in pure

software. The AD725 (and the more recent AD723) take out that problem from the equation. It accepts as input

discrete voltages for each RGB color components and, internally, converts them to the appropriate luminance

and chrominance information. It also generates the color burst, adds it to the composite sync generated by the

MCU, does some filtering and outputs composite video and S-video simultaneously. No hassles and guaranteed

stable results.

The AD725 requires two more input to perform its job. One is the composite sync signal generated by the

MCU. The other one is a clock signal at 14.31818Mhz. This clock happens to be four times the frequency of the

color burst and is absolutely required in order to generate color. That clock frequency also happens to be exactly

half that of the MCU. This is no coincidence. The MCU has a timer set to toggle an output pin at half its main

clock.

All circuitry immediately surrounding the AD725 is taken directly from the datasheet’s reference design so

please refer to it for more details.

3.4 Sound

The console's sound “system” is very simple. It consists of a mono signal output on a single pin via pulse width

modulation (PWM). A simple resistor divider at the output (PD7) insures the TV receives a 1 volt peak-to-peak

signal.

3.5 Joypad interface

The beauty of the SNES interfaces is its simplicity and ease of integration. In each SNES joystick there's a 16-

bit shift register. The way it works is simple. When the console wants to read the buttons state, it strobes the

latch line on the shift register to load and hold all the button states. The console then starts toggling the

controller's clock line and 16 bits are serially shifted into the console's data line. No external parts required, and

only four I/O lines are required to support the two joysticks. Can't be much simpler, really. Note that the NES

interface is identical except it's shift register is only 8 bits wide.

For more details, have a look at this very good NES/SNES interface document from Parallax:

http://www.parallax.com/dl/docs/prod/prop/Hydra-Ch6All-v1.0.pdf

3.6 SD Card Interface

The SD card interface is also very simple. It requires only few external components. A SD card socket, a few

resistors to act as voltage translator (the Atmega644 lines output 5V and the SD must receive 3.3V) and another

voltage regulator (since the SD card works at 3.3 Volts).

Everything else that could be remotely complex is part of the SD card itself! To make things even simpler, the

SD cards support communication with microcontroller using the SPI protocol.

4 Software

4.1 Kernel

When running it appears the Atmega644 is performing many tasks at once, like video rendering, reading the

controller and playing music. All these operations are in fact executed sequentially but fast enough to appear

simultaneous. The set of these core, low level functions onto which the API and game depends is referred to as

the kernel. It is responsible to:

• Initialize ports, timers and other hardware peripheral upon reset

• Generate the composite video synchronization pulses required by the AD725

• Decode the music score data and process sound effects

• Mix sound samples for the four voices

• Output sound sample from the mix buffer at a regular interval

• Read the controllers buttons and mouse movement

• Read the UART for inbound data and store it into a buffer

The kernel perform its work in a background task called an interrupt. As the name implies, this task interrupts

the main program by saving it’s state, doing some work, restoring state and resuming the main program.

Interrupts allows the main program to stay simpler and run asynchronously to the kernel not having to care

about its complex and time sensitive tasks.

With only 64K of flash memory, great attention must be made to keep the kernel as small as possible to leave

the main program with enough room to implement interesting games. The use of compile-time switches are

used heavily in the kernel. These switches are specified in the Makefile and will conditionally include or

remove code, allocate varying amount of bytes for the video memory, select the video mode, disable the

Uzebox logo, etc.

4.1.1 Initialization

Upon initialization, the kernel will configure many thing, most importantly a timer which will generate

interrupts at 15.7Khz, the NTSC scanline frequency. That is, the kernel will be invoked for every scanline of a

video picture (in fact not all of them, more on that later). Figure 4 gives an high level view of the kernel’s

initialization process.

AVR Reset

Initialize static variables

Initialize Kernel

Invoke main()

Figure 4: Kernel initialization process

Figure 5 describes the initialization function in more details. Upon it’s completion, the main program will start

getting interrupted by the kernel.

Initialize Kernel

Format EEPROM

Initialize sound mixer

Is EEPROM

Formatted?

Initialize MIDI UART

(optional)

Set ports directions

Set kernel/sync

interrupt timer

Set AD725 clock divider

Set sound PWM timer

Initialize video mode

Display Uzebox logo

Initialization end

No
Yes

Figure 5: Kernel initialization function

4.1.2 Kernel Interrupt

As mentioned earlier, the kernel interrupt is responsible to pause the main program in order to render video and

mix music. The kernel interrupt is completely written in assembler because of speed and timing requirements.

Timing is particularly critical here since just a single clock cycle in excess or missing can cause a drift in the

resulting video signal. Eventually as this error accumulates, the TV will have problems to sync and the picture

will suffer jitter and/or stuttering.

The development of the interrupt was the most time consuming (and sometime frustrating) part of developing

the Uzebox software. Using AVR Studio’s simulator cycle counter was crucial in timing up this code. Without

it I would have been in the dark!

Figure 6 describes the kernel’s interrupt process.

Kernel Interrupt

Correct interrupt latency

Generate sync pulse

and increment scanline

counter

First line

to render?

Interrupt end

Yes

No

Re-activate interrupts

Render video

frame

Process music

(and mix sound)

Invoke pre-vsync user

callback

Invoke post-vsync user

callback

Initiate Vsync timing

Read joypads

Output next

sample from

audio buffer

Figure 6: Kernel interrupt process flow

The kernel uses Timer1, the 16 bit counter, to trigger interrupts. The timer starts at zero and counts up to 1820

at which point it will automatically roll over to zero and generate an interrupt. The 1820 value comes from

dividing the main crystal frequency (28.63636 Mhz) by the NTSC scanline rate (15.73426 kHz).

4.1.2.1 Latency correction

The AVR does not have a deterministic interrupt response time (cycle count) so we can never know for sure

how many cycles have elapsed before executing the interrupt’s first instruction. This comes from the fact that

AVR instructions takes between 1 to 4 cycles to execute and will always complete before the AVR

acknowledges an interrupt. If not corrected, the picture will experience jitter. Fortunately, the way to fix this is

pretty simple. We read Timer1 value right at the beginning of the interrupt and subtract from it a fixed number

corresponding to the minimum interrupt latency in cycles. From there remains zero or more “extra” latency

cycles that will be used in a special loop to correct latency. After this loop execution, will we always be at a

known state, say exactly 100 cycles after Timer1 rolled over.

4.1.2.2 Synchronization and sound output

The kernel will then generate synchronization pulses and output sound. Sync pulses are negative going, so they

are generated by toggling the sync pin from one to zero, wait a finite amount of cycles, then toggle back to one.

In order to minimize wasted cycles “just waiting”, some work is actually performed in between toggles. The

next sample from the audio ring buffer is read and output to the audio PWM port. Also, if the UART RX is

enabled (i.e.: for MIDI), the kernel will move received data into a buffer. Note that both these operations are

handed tuned assembler to fit within a sync pulse (i.e.: about 63 clock cycles). After generating the sync pulse,

the kernel will check if it has reached the scanline at which the picture begins. If so, it will invoke the frame

rendering function and initiate VSYNC. Otherwise, the interrupts completes and returns control to the main

program.

4.1.2.3 Frame rendering

Frame rendering consists in drawing a complete video picture for 1/60
th

 of a second. Since the Uzebox uses 224

lines of resolution and a TV has 525, the same frame is rendered for both odd and even video fields. Frame

rendering uses one of the many available video modes. Each video mode implements a different algorithm to

use the limited resources in order to produce a picture. They each have trade-offs that must be. For instance,

video mode 3 support sprites and full screen scrolling but takes significantly more memory and CPU cycles

when compared to mode 1, which does not. So far, eight video modes has been implemented each with is very

unique particularities. Due to many factor amongst other complexity and flash memory limitations, the kernel

currently support only one video mode per game. This mode is used via the VIDEO_MODE compile-time

switch. Although the most widely used and powerful video mode, mode 3 is also the most elaborate an

complex one. So we will instead describe the most simple one, mode 1, the same one used by Megatris.

Conventional graphics adapter like VGA used a frame buffer to hold picture information. Each and every

discrete point on the screen (pixels) took one byte in the frame buffer to describe its color. The classic 320x200

pixels mode hence required 64K of RAM to hold a complete picture. So how can the Uzebox that doesn’t have

a frame buffer, less have 64K of RAM, still manages to render a 240x224 picture in 256 colors? With an old

trick used by the first generations of console (like the NES) called tile-based rendering. Similar to a text-based

video mode using a matrix of character indexes instead of discrete pixels, the picture will be made of repeating

patterns called tiles.

Mode 1 is precisely a tile-based video mode. Although the final rendered picture is 240x224 pixels, internally it

is represented by a 40x28 array of 16bits pointers to 6x8 pixels tiles in FLASH. The VRAM (video RAM) will

directly contain relative memory pointers to the tile to be rendered. This contrasts with some other video modes

which stores 8bits indexes in VRAM and can display no more than 256 tiles simultaneously. So while a

240x224 image would require ~53K of VRAM, this 40x28 array of (16-bit) pointers consumes only ~2.2K.

Figure 7 shows the how the memory is organized in a tile-based VRAM. Tiles pixels are stored linearly in

FLASH one row after another. Figure 8 shows a 6x8 pixel tile as used by mode 1. In Figure 9, we can see that

the different rows that makes a tile are store consecutively in FLASH memory.

40

28

Tile

Figure 7:Tile-based VRAM in video mode 1

During rendering, the VRAM is traversed row by row and each tile pointer is used to retrieve it’s pixels.

6x8 Tile

Row 0

C
o
lu
m
n

0

Pixel 5

Pixel 47

Pixel 0

Figure 8: Tile

Figure 9: Tile pixels storage

Once the kernel reaches a defined scanline (FIRST_RENDER_LINE), frame rendering will begin. During this

phase, all scanlines will be drawn for a full field before control is returned and the interrupt completes. This is

because there is not enough time during HSYNC to restore all registers, get back to the main program et re-

acknowledge another interrupt. This means that timing will be extremely critical. Each and every line, including

the sync code must take exactly 1820 clock cycles.

The frame rendering function is made of a main loop that will maintain variables (VRAM pointer and the tile

row offset) and call the scanline rasterizer for each video line. The rasterizer will then load the VRAM for the

next tile pointer to be rendered for this scanline and start fetching and outputting pixels for this tile. Intertwined

with this, the code will fetch the next tile address and compute it final address. This process is repeated 40

times, the width of the screen in tiles. The rendering process is illustrated in Figure 10.

Render Video Frame

(Video mode 1)

Setup

Generate HSync pulse

Generate H-sync pulse

Last line

in frame?

Last row in tile?

Clear Vsync flag

Render frame end

No

No

Yes

Increment VRAM

pointer to next row of

tiles

Yes

Decrement lines

remaining

Render scanline

Increment tile’s row

offset

Y offset in tile row=0

Rasterize scanline

(video mode 1)

More tiles to

render?

Load address of the first

tile to render from vram

Set tiles to draw=40

Add tile’s row offset to

adress

Load address of the

next tile to render from

vram

Add tile’s row offset to

adress

Output black pixel

(Turns off DAC during

horizontal overscan)

Render scanline end

No

Yes

Load tile pixels

(6) from flash

and output to

video DAC

Figure 10: Mode 1 rendering process

The following listing is the scanline rasterizer for mode 1:

;***

; Renders a line within the current tile row.

; Draws 40 tiles wide @ 6 clocks per pixel

;

; r22 = Y offset in tile row (0-7)

; r23 = tile width in bytes

; Y = VRAM adress to draw from (must not be modified)

;

; cycles = 1495

;***

render_tile_line:

 movw XL,YL ;copy current VRAM pointer to X

 ;//

 ;Compute the adress of the first tile to draw

 ;//

 ld r20,X+ ;load absolute tile adress from VRAM (LSB)

 ld r21,X+ ;load absolute tile adress from VRAM (MSB)

 mul r22,r23 ;compute Y offset in current tile row

 movw r24,r0 ;store result in r24:r25 for use in inner loop

 add r20,r24 ;add Y offset to tile address

 adc r21,r25 ;add Y offset to tile address

 movw ZL,r20 ;copy to Z, the only register that can read from flash

 ldi r18,SCREEN_TILES_H ;load the number of horizontal tiles to draw

mode1_loop:

 lpm r16,Z+ ;get pixel 0 from flash

 out VIDEO_PORT,r16 ;and output it to the video DAC

 ld r20,X+ ;load next tile adress from VRAM (LSB)

 lpm r16,Z+ ;get pixel 1 from flash

 out VIDEO_PORT,r16 ;and output it to the video DAC

 ld r21,X+ ;load next tile adress from VRAM (MSB)

 lpm r16,Z+ ;get pixel 2 from flash

 out VIDEO_PORT,r16 ;and output it to the video DAC

 rjmp . ;2 cycles delay

 lpm r16,Z+ ;get pixel 3 from flash

 out VIDEO_PORT,r16 ;and output it to the video DAC

 add r20,r24 ;add Y offset to tile address

 adc r21,r25 ;add Y offset to tile address

 lpm r16,Z+ ;get pixel 4 from flash

 out VIDEO_PORT,r16 ;and output it to the video DAC

 lpm r16,Z+ ;get pixel 5 from flash

 movw ZL,r20 ;load the next tile's adress in Z

 dec r18 ;decrement horizontal tiles to draw

 out VIDEO_PORT,r16 ;and output it to the video DAC

 brne mode1_loop

 rjmp . ;2 cycles delay

 nop ;1 cycle delay

 clr r16 ;set last pixel to zero (black)

 out VIDEO_PORT,r16

 ret

4.1.2.4 VSYNC

When the picture finishes rendering, VSYNC will be initiated. Since this phase happens before the next frame

to be rendered it is the perfect time to “prepare” stuff in advance. Such things will include reading the

controllers, mixing music and blitting sprites (for modes that supports it). Before these happens, the kernel will

be the user program a change to read or change kernel parameter via a user callback. Another callback will be

invoked when all the kernel’s VSYNC processing is complete just before returning control to the main program.

The video timing will also be updated to generate the equalization and serrations pulse necessary to indicate to

the television that a new frame is to begin.

4.1.2.5 Read Controllers

Controllers buttons for both ports and the SNES mouse are read during VSYNC. The function simply strobes

the latch line to store the buttons states in the controller’s shift register and clock the bits in to be read and

packed into two integers. These integers can then be read using the ReadJoypad() API function.

Figure 11: Controller read process

4.1.2.6 Music Processing and Sound Mixing

Another important step that happens during VSYNC is the sound processing. This is separated in two logical

steps: the music processing and the actual low level mixing of the individual voices or sound channels. Before

getting into theses processes, we will explain the sound engine general concepts.

The Uzebox sound engine does not use any hardware synthesizers, the music is 100% rendered by software.

The engine has 4 independent sound channels, three melodic and one noise channel. Each have their own

independent waveform, volume and pitch (for the melodic channels).

Music processing refers to the reading of the musical score and the processing of envelopes, tremolo and other

high level functions in order to set the parameters of the low level mixer. The music replayer is designed to play

MIDI streams. MIDI is a very compact and space efficient format for music. It is made of a continuous stream

of events each of which is separated in time using a number of 'ticks' (a delta-time value). Events can be notes,

tempo change, modulation change, etc. and can be associated to a specific channel or be global (like tempo

events). Instruments are supported in the form of “patches”, and old term referring to the patching of cable in

the very first synthesizers to obtain different sounds. Uzebox patches are a stream of byte commands that can

alter the timbre, pitch or volume of a voice. Since these commands are read once per frame (60hz) , complex

and intricate sounds can be produced. Patches are simple C byte arrays and typically look like this:

//FX: "Echo Droplet"

const char patch01[] PROGMEM ={

0,PC_WAVE,2,

0,PC_ENV_SPEED,-12,

5,PC_NOTE_UP,12,

5,PC_NOTE_DOWN,12,

5,PC_NOTE_UP,12,

5,PC_NOTE_DOWN,12,

5,PC_NOTE_CUT,0,

0,PATCH_END

};

The first parameter is the “delta-time” or the delay in frame until the next command will play. The second byte

is the actual command. The third byte is the command’s parameter. Note that patches are not only used to play

music but also used to defined sound effects in a game. The TriggerFX(patch, volume) API call will be used to

trigger the play back of that patch.

When the conversion process is complete, it is pretty easy to play songs. Simply initialize the engine using:

InitMusicPlayer(myPatches);

Then start the song using:

StartSong(mySong);

Stop/pause the song using:

StopSong();

And resume where you last stopped with:

ResumeSong();

Figure 12 describes the music player process.

Add to 16-bit mix

accumulator

(channel 1,2,3)

Mix sound

Load all channels wave

position, step and

volume

Increment wave

position using step

(channel 1,2,3)

Get sample and multiply

by volume

(channel 1,2,3)

Rotate the 7/15 bits

barrel shifter

(channel 4)

Add to 16-bit mix

accumulator

(channel 4)

Multiply sample by

volume

(channel 4)

Convert barrel LSBit to

-128/+127 sample

(channel 4)

Clip accumulator to

-128/+127

Store mixed sample to

ring buffer

Store wave positions

Mix sound end

More samples

to mix?

No

Yes

A

AProcess Music

Is song started?

Process volume

envellopes

Read and process song

data for the current

frame

Read and process MIDI

events (optional)

Process patch

command streams

Compute final volume

for all voices

End Process Music

Yes
No

Figure 12: Music and sound mixing processes

Once the music has been processed, notes has been set and volume envelopes processed, control is passed to the

mixer that will actually generate the tones that will be heard on the TV.

The mixer stores the computed samples to a circular buffer (also called a ring buffer). It is a byte array in RAM

logically segmented in two parts (A and B). Part A plays while part B is mixed. Then at each frame beginning,

they are switched and part A is mixed and part B is played. Each part contains exactly as many samples as there

is scanlines in a video field (two interlaced fields makes a frame), in this case, 262. So at 15.7Khz (the NTSC

line rate) during the HSYNC pulse, a byte is read from the circular buffer and output to the sound port (by mean

of PWM). HSYNC pulses happens non-stop even during blanking intervals. A whole field worth of music is

mixed "one-shot" and all four channels are mixed simultaneously without resorting to a temporary 16-bit signed

buffer since there’s not enough RAM. Naturally, music mixer code is in assembler and, for optimal speed, all

registers are used during mixing. Figure 13 illustrates the circular buffer in some arbitrary point in time.

Figure 13: Circular buffer mixing

To obtain different timbre, the engine uses a table made of short, repeating waveforms for the first 3 channels.

Each wave is exactly 256 samples long (8 bits signed) and are forced-aligned on an 8 bit boundary in ROM.

Because of this, we only need a 8 bit pointer for the waveform's position. Position will wrap automatically,

effectively giving "free-running oscillators". Using a any sound tool, it is easy to create waveforms that can vary

from a simple square wave to a sine or filtered triangle. The 4th channel is the noise channel and implements a

switchable 7/15 bits linear feedback shit register (LFSR). LFSRs are pseudo random. The 7 bits mode is more

metallic sounding because all bit states are repeated each 1287 samples. The 15 bits mode sound much more

like white noise because they are repeated each 32768 samples.

Pitch is done like most “MOD” players, with a "step table". This table consists of pre-calculated 8:8 fixed point

values that represents the input sample's (i.e.: the 256 bytes wave) pointer increment per output sample (the mix

buffer). There is one fixed point word per note, for a total of 127 notes. The wave table is composed of 256

bytes waves and each wave models exactly one "sound cycle". I.e. for a triangle wave, it would contain : /\/ .

Let say the mixing rate is 8Khz and we want to play a C5. We look in the step table for note 48 (C5). It says

note frequency is 8Khz and its calculated stepping is hence 1.000. For each output sample, we increment the

input pointer by exactly one. Now say we have a C6, an octave higher (so its double the frequency). The

stepping of this note will be 2.000. That means that for each output sample, we increment the input by two

samples, effectively skipping one of them. You get the idea. Note that for high stepping, a lot of sample are

skipped and combined with wrapping it introduces aliasing. That can be somewhat minimized by using slow

rising/ending waves. Check Figure 12 for the mixing procedure.

The MIDI music tracks are converted using a custom tool available with the project’s sources.

5 Programming the Uzebox
The Uzebox uses the open source GNU GCC for AVR tool chain. On Windows you will need to install the

WinAVR package. For development Atmel’s AVR Studio can be used or Eclipse for C using the AVR plug-in.

Using Eclipse is better because it support GDB (GNU debugger) and hence you can step-debug directly on the

Uzebox emulator.

5.1 Simple Hello World Example

The following listing uses video mode 1 do display a classic hello world, Uzebox style. As we can see, all

complexity has been abstracted in the kernel’s background task and the development of games are very simple

and straightforward. Naturally since the Uzebox functions are 100% software, more savvy users can tweak the

kernel or even invent new video modes or sound mixers.

#include <avr/io.h>

#include <stdlib.h>

#include <avr/pgmspace.h>

#include <uzebox.h>

#include "data/fonts.pic.inc"

int main(){

 //Set the font and tiles to use.

 //Always invoke before calling ClearVram()

 SetFontTable(fonts);

 //Clear the screen (fills the vram with tile zero)

 ClearVram();

 //Prints a string on the screen at the specified (x,y) location.

 //Note that PSTR() is a macro that tells

 //the compiler to store the string in flash.

 Print(8,12,PSTR("HELLO WORLD FROM THE UZEBOX!"));

 //Embed program must never return from main() so wait forever.

 while(1);

}

6 Important resources
The main project page: http://uzebox.org

A wealth of information has been written since the project went live. Tutorials, documentation, troubleshooting

and more can be found on the project WIKI at http://uzebox.org/wiki.

The forum is a good place to ask question to a cheerful community always eager to help:

http://uzebox.org/forums

The Uzebox news feed: http://uzebox.org/news

EOF

